Was ist ein Bruch? (Grundlagen)

In diesem Mathematik Blog-Eintrag erfährst du, was ein Bruch ist.

Sicher hat du schon einmal gehört, dass man eine Pizza teilen kann. Du kannst sie in zwei, drei, vier, fünf, usw. Teile teilen, jenachdem wie groß die Pizzaschnitte werden soll. Je kleiner die einzelne Pizzaschnitte wird, in desto mehr Teile kannst du die ganze Pizza teilen.

Du kannst aber auch eine Torte auf verschiedene Personen aufteilen. Angenommen 6 Menschen wollen eine Torte essen und jeder will gleich viel davon haben. Dann muss man diese Torte in 6 gleich große Teile teilen.

Genau so kann man sich auch Brüche (auch Bruchzahlen genannt) vorstellen. Ein Ganzes (Pizza, Torte, usw.) kann man in mehrere Teile teilen.

\( 1 = \frac{1}{2} + \frac{1}{2} = \frac{2}{2}\)
Eine Pizza wird auf zwei Teile aufgteilt:
Ein Halb plus ein Halb sind zwei Halbe.

\(1 = \frac{1}{3} + \frac{1}{3} + \frac{3}{3}\)
Eine Pizza wird auf drei Teile aufgteilt.
Ein Drittel plus ein Drittel plus ein Drittel sind drei Drittel.

\(1 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{4}{4}\)
Eine Pizza wird auf vier Teile aufgteilt.
Ein Viertel plus ein Viertel plus ein Viertel plus ein Viertel
sind vier Viertel.

Das kann man so nun endlos weiter machen!
Alle Teile zusammen ergeben wieder ein Ganzes!

Der Bruch bzw. der Bruchterm

Oben befindet sich der Zähler, unten der Nenner und in der Mitte der Bruchstrich. Alles zusammen nennt man einen Bruch bzw. Bruchterm.
Oben befindet sich der Zähler, unten der Nenner und in der Mitte der Bruchstrich.
Alles zusammen nennt man einen Bruch bzw. Bruchterm.

Vielleicht hast du dich schon gefragt, wie man die Zahl oberhalb und die Zahl unterhalb des Strichs nennt.

Man nennt die Zahl oben den Zähler und die Zahl unten den Nenner. In der Mitte befindet sich der Bruchstrich.

Alles zusammen nennt man das einen Bruch bzw. Bruchterm.

Beispiel: \(\frac{1}{4}\)

In diesem Beispiel ist die Zahl 1 der Zähler, die Zahl 4 ist der Nenner und in der Mitte ist wieder ein Bruchstrich.

Bitte merken:

  • Ein Bruch teilt immer eine ganze Zahl in mehrere Bruchteile.
  • Es können aber auch nur einzelne Teile (Pizzaschnitten) von einem Ganzen (eine ganze Pizza) vorhanden sein.
  • Oben steht immer der Zähler
  • Unten steht immer der Nenner
  • In der Mitte befindet sich immer der Bruchstrich

Ausmultiplizieren von Termen mit einer Klammer in Mathematik

In diesem Artikel erfährst du, wie du einen Term in dem eine Variable und eine Klammer mit weiteren Variablen ausmultiplizieren kannst.

Hier ein allgemeines Beispiel, damit du weißt, worum es geht:

\( a \cdot( x + d) = a \cdot x + a \cdot d\)

Wie man unschwer an diesem Beispiel erkennen kann, wird die Variable a mit der Variable x mulipliziert und die Variable d wird mit a multipliziert. Die zwei Podukte werden dann mit dem Plus zusammengefasst.

Hier noch ein paar weitere Beispiele, um das Ausmultiplizieren mit einer Klammer zu verdeutlichen:

\( 2a \cdot( 4a + 5b) = \\ = 2a \cdot 4a + 2a \cdot 5b = \\ = 8a^2 + 10ab\)

\( 20x \cdot( 4xa + 5xb) = \\ = 20x \cdot 4xa + 20x \cdot 5xb = \\= 80x^2a + 100x^2b\)

Das Ausmuliplizieren von Termen gehört zu den wichtigsten Fähigkeiten, die du in Mathematik können solltest! Daher: Üben, üben und nochmals üben! Mehr Beispiele solltest du in deinem Schulübungsheft oder in deinem Mathe-Buch finden!

Ausmultiplizieren von Termen mit einer Klammer – Allgemeine Formel
Ausmultiplizieren von Termen

Was bedeutet 2*π?

Sicher fragen sich die einen oder anderen, was es mit dem Namen dieser Webseite auf sich hat!

Pi als Kreiszahl (3,1415926…)

Der Ausdruck “2 mal π” (kurz 2π) kommt aus der Mathematik. Der griechische Buchstabe Pi (π) steht für die Kreiszahl Pi. Sie ist als Verhältnis des Umfangs eines Kreises zu seinem Durchmesser definiert. Pi hat den Verhältniswert 3,1415926… .

Pi als Winkel ( π =180°)

Viele wissen jedoch nicht, dass Pi (π) nicht nur eine Kreiszahl ist, sondern auch ein Winkel! Die Kreiszahl Pi entspricht nämlich genau einem Winkel von 180 Grad (also einem halben Kreis). Multipliziert man Pi nun mit dem Faktor zwei (also das Doppelte von Pi), so entspricht einem vollen Winkel mit 360 Grad! Dies entspricht dem Winkel eines Kreises!

Hier das Ganze nochmal mathematisch:
π = 180°, 2 mal π = 2 mal 180° = 360°

Mehr zu diesem Thema findest du auch hier:

Kommaverschiebung – Einfach erklärt!

Das Komma in einer Zahl kann man mit Hilfe der Kommaverschiebung verändern. Dadurch ändert sich auch die Zahl selbst!

Multiplizieren – Kommaverschiebung nach rechts – Zahl wird größer

Durch das Multiplizieren einer Zahl mit 10 verschiebt sich das Komma um eine Stelle nach rechts! Die Anzahl der Nullen entsprechen den Stellen, um die das Komma nach rechts verschoben wird!

Beispiel: 1,22 mal 10 ist 12,2 ← Das Komma ist um eine Stelle nach rechts gewandert und die Zahl ist dadurch größer geworden!

  • Mal 10 → 1 Stelle nach rechts (Beispiel: 1,22 mal 10 ist 12,2)
  • Mal 100 → 2 Stellen nach rechts (Beispiel: 1,22 mal 100 ist 122,0)
  • Mal 1000 → 3 Stellen nach rechts (Beispiel: 1,22 mal 1000 ist 1220,0)

Dividieren – Kommaverschiebung nach links – Zahl wird kleiner

Durch die Division einer Zahl durch 10 verschiebt sich das Komma um eine Stelle nach links! Die Anzahl der Nullen entsprechen den Stellen, um die das Komma nach links verschoben wird!

Beispiel: 143,2 dividiert durch 10 ist 14,32 ←Das Komma ist um eine Stelle nach links gewandert und die Zahl ist dadurch kleiner geworden!

  • Dividiert durch 10 → 1 Stelle nach links (Beispiel: 143,2 dividiert durch 10 ist 14,32)
  • Dividiert durch 100 → 2 Stellen nach links (Beispiel: 143,2 dividiert durch 100 ist 1,432)
  • Dividiert durch 1000 → 3 Stellen nach links (Beispiel: 143,2 dividiert durch 1000 ist 0,1432)

Den ganzen Artikel zum Thema Kommaverschiebung gibt es auch als pdf zum downloaden!

Du brauchst (Online-)Nachhilfe in Mathematik? Dann schau doch mal auf meiner Infoseite vorbei und schreibe mir eine Nachricht oder rufe mich an!

Brüche kürzen mit dem größten gemeinsamen Teiler (ggT)

Wusstet ihr, dass es einen Zusammenhang zwischen dem Kürzen von Brüchen und dem größten gemeinsamen Teiler (ggT) gibt? Hä?

Ja den gibt es!

Wenn ihr nämlich Brüche kürzen könnt oder Brüche erweitert, verwendet ihr dazu nämlich immer die berühmten Primzahlen und den größte gemeinsame Teiler (ggT)! Dieser besteht ja aus dem Produkt jener Primzahlen, die beide Bruchzahlen gemeinsam haben!

Was es nun aber genau damit auf sich hat erklärt euch Christian Spannagel anhand eines sehr praktischen und anschaulichen Beispiels:

Brüche kürzen und der ggT (von Christian Spannagel)

Du brauchst “Offline-Nachhilfe” in Mathematik in Wien? Dann schau doch mal auf meiner Infoseite vorbei und schreibe mir eine Nachricht oder rufe mich an!